ҳ» ϢѶ» ѧ»

A 2-categorical systematic way to induce G-precoverings and its applications

ѧߣHideto Asashiba

ߵλԴѧ/ѧ ߵоԺ

ʱ䣺2024115  14:30-16:30

ص㣺¥209

ժҪThroughout this talk G is a fixed group, and k is a fixed field.  All categories are assumed to be k-linear.

First, we give a systematic way to induce G-precoverings by adjoint functors using a 2-categorical machinery. Now let C be a skeletally small category with a G-action, C/G the orbit category of C, (P, \phi) : C > C/G the canonical G-covering, and mod C, mod C/G the categories of finitely generated modules over C, C/G, respectively.

Then there exists a canonical G-precovering (P., \phi.) : mod C > mod C/G.

We then apply this machinery to produce G-precoverings (mod C)/S > (mod C/G)/S between the factor categories or localizations of mod C and mod C/G from the precovering (P., \phi.).

This is further applied to the morphism category H(mod C) of mod C to have a G-precovering fp(K) > fp(K) between suitable subcategories K and K of the categories of finitely presented modules over mod C and mod C/G, respectively.

This is a joint work with Rasool Hafezi and Mohammad Hossein Keshavarz.

ѧ߼Hideto AsashibaձԴѧݽڣѧѧоѧоԱ2024ձѧѧĻߡڵȼ۵Ĺ췽оȡһϵӰĽйGrothendieckĵȼ۵ĽAdv. Math. 235(2013), 134-160ڵȼۡȶȼGabriel طоǰصλǹ΢ִַη2ĵճϺGrothendieckĺѾɣһǽһоⷽ⡣ϣHideto AsashibaڣϣHideto Asashibaڵȼ븲۵ijɹľ飬õȼڸоȺۡ

Baidu
map