Relative Koszul coresolutions and relative Betti numbers
ѧߣHideto Asashiba
ߵλԴѧ/ѧ ߵоԺ
ʱ䣺2024118 14:30-16:30
ص㣺¥209
ժҪLet G be a finitely generated right A-module for a finite-dimensional algebra A over a fieled k, and I the additive closure of G. We will define an I-relative Koszul coresolution K^.(V ) of an indecomposable direct summand V of G, and show that for a finitely generated A-module M, the I-relative i-th Betti number for M at V is given as the k-dimension of the i-th homology of the I-relative Koszul complex K_V(M)_. := Hom_A(K^.(V), M) of M at V for all i 0. This is applied to investigate the minimal interval resolution/coresolution of a persistence module M, e.g., to check the interval decomposability of M, and to compute the interval approximation of M
ѧHideto AsashibaձԴѧݽڣѧѧоѧоԱ2024ձѧѧĻߡڵȼ۵Ĺ췽оȡһϵӰĽйGrothendieckĵȼ۵ĽAdv. Math. 235(2013), 134-160ڵȼۡȶȼGabriel طоǰصλǹִַη2ĵճϺGrothendieckĺѾɣһǽһоⷽ⡣ϣHideto AsashibaڣϣHideto Asashibaڵȼ븲۵ijɹľ飬õȼڸоȺۡ